Karir

Apa itu data mining?

Memeriksa data dengan benar dapat meningkatkan pengambilan keputusan strategis dan pemahaman pasar dalam bisnis. Mengevaluasi data, juga disebut data mining, adalah keterampilan berharga yang membutuhkan pemikiran kritis untuk dieksekusi secara efisien. Apa pun datanya, proses analitis ini dapat disesuaikan agar sesuai dengan sebagian besar kebutuhan organisasi. Dalam artikel ini, kami menjelaskan apa itu data mining, membahas pentingnya, memberikan langkah-langkah proses, dan menawarkan contoh bagaimana perusahaan dapat menggunakannya secara efektif.

Apa itu data mining?

Data mining adalah proses memeriksa kumpulan data untuk menemukan pola atau kesamaan dan membuat prediksi atau keputusan yang tepat. Profesional yang melakukan data mining menggunakan sistem pemrosesan otomatis yang dapat menyaring data dengan mudah dan menghasilkan hasil yang cepat. Perusahaan dapat menggunakan proses ini untuk mengubah data mentah mereka yang tidak dikategorikan menjadi kumpulan data berwawasan luas yang memenuhi kebutuhan masing-masing. Beberapa data mining wawasan dapat menyebabkan termasuk:

  • Belajar lebih banyak tentang perilaku pelanggan untuk meningkatkan penjualan
  • Membuat keputusan yang tepat untuk meningkatkan efisiensi operasional
  • Memahami cara menargetkan ulang pengguna atau calon pengguna

Data mining juga dapat membantu mengungkapkan informasi khusus, seperti berapa lama pengunjung situs menghabiskan waktu untuk posting blog perusahaan. Informasi yang Anda temukan bergantung pada tujuan dan fokus bisnis Anda.

Mengapa data mining penting?

Data mining memungkinkan Anda untuk memeriksa data secara efisien dan efektif. Misalnya, bisnis mungkin menggunakan proses ini untuk lebih memahami audiens konsumen yang ingin dijangkau. Data mining juga dapat membantu bisnis menyaring data yang tidak perlu, meninggalkan kumpulan data yang paling relevan untuk evaluasi. Ini dapat membantu para pemimpin perusahaan untuk fokus pada satu kelompok atau tantangan tertentu, menghemat waktu dan sumber daya. Perusahaan mungkin juga dapat memperoleh keunggulan kompetitif di pasar dengan menggunakan data mining untuk menjelajahi pasar baru dan tetap mengikuti tren konsumen.

Cara kerja proses data mining

Jika Anda tertarik untuk belajar menambang data, tinjau langkah-langkah ini tentang cara kerja proses:

Mengumpulkan dan menyimpan data

Langkah pertama untuk data mining adalah mengumpulkan data Anda. Fokus pada data yang menjawab kebutuhan bisnis yang ingin Anda analisis, seperti data kampanye pemasaran atau penjualan produk. Saat mengumpulkan informasi ini, akan bermanfaat untuk mengunggah data ke metode penyimpanan sementara, seperti data lake, yang menyimpan sejumlah besar data mentah, atau gudang data, yang dapat menyimpan sejumlah besar data yang difilter. Ini dapat menjaga data Anda tetap aman hingga Anda siap untuk menyimpannya secara permanen di dalam sistem perusahaan Anda.

Setelah Anda mengumpulkan data Anda, letakkan di dalam sistem organisasi data permanen perusahaan Anda. Misalnya, Anda dapat menambahkannya ke server internal atau penyimpanan cloud yang aman. Memilih opsi penyimpanan yang tepat mungkin bergantung pada ukuran data atau jumlah penyimpanan yang tersedia.

Kelola data

Setelah Anda menyimpan data Anda, berikan akses ke individu yang bertanggung jawab atas pengelolaannya. Ini dapat mencakup analis bisnis atau data, tim manajemen informasi, atau spesialis teknologi informasi. Saat mengelola data, para profesional ini mungkin memikirkan cara terbaik untuk mengaturnya, seperti menurut kategori atau sumber, untuk memberikan wawasan yang paling berarti bagi perusahaan.

Urutkan data

Setelah tim manajemen data Anda menentukan cara terbaik untuk mengatur data, mereka dapat berkomunikasi dengan sistem tentang cara mengurutkannya. Komunikasi ini kemudian memungkinkan sistem untuk secara otomatis menyortir data untuk memenuhi kebutuhan pengguna. Setelah selesai, Anda dapat meninjau hasil dan semua wawasan data.

Menyajikan data

Bergantung pada informasi apa yang diberikan data, Anda dapat menyajikan hasil dan wawasan tentang informasi bisnis penting secara internal atau eksternal. Misalnya, jika data tentang operasi atau keterlibatan internal, Anda mungkin hanya membagikannya secara internal. Namun, jika wawasan mengungkapkan kepuasan pelanggan yang tinggi, Anda dapat memilih untuk menyoroti informasi tersebut atau bagiannya dalam kampanye promosi.

Untuk menyajikan data, pertimbangkan representasi visual untuk membantu memastikannya mudah dipahami oleh semua orang. Cara Anda memilih untuk mewakili data Anda secara visual dapat bervariasi berdasarkan preferensi atau keadaan individu. Misalnya, Anda dapat menggunakan grafik, tabel, atau persentase tertentu yang menampilkan informasi.

Contoh data mining

Berikut adalah dua contoh data mining yang dapat Anda rujuk untuk membantu Anda lebih memahami proses dan cara kerjanya dalam skenario dunia nyata:

Data mining untuk wawasan tentang penargetan ulang

Northwest Vermont University tertarik untuk mempelajari lebih lanjut tentang cara menargetkan ulang calon mahasiswa. Di situsnya, saat ini terdapat formulir permintaan informasi (RFI) untuk masing-masing jurusan. Kriteria utama universitas tertarik untuk belajar adalah usia, lokasi dan program yang dipilih dari individu yang telah mengisi formulir. Setiap kali calon siswa mengajukan RFI, sistem situs web mengumpulkan dan menyimpan data.

Selanjutnya, analis data universitas mengurutkan data RFI yang sesuai untuk mengumpulkan hasil akhir. Kemudian, tim membuat tabel dan bagan interaktif untuk menunjukkan bagaimana lokasi dan program yang dipilih berubah seiring bertambahnya usia. Universitas Northwest Vermont sekarang dapat menggunakan data ini untuk menargetkan ulang program ke kelompok usia tertentu di lokasi yang teridentifikasi.

Data mining untuk wawasan tentang loyalitas pelanggan

Program penghargaan loyalitas Dark Metal Roast Caffeinery menawarkan promosi dan penawaran khusus. Untuk bergabung dengan program loyalitas, pelanggan dapat mendaftar di perangkat seluler mereka dan mendapatkan poin dengan setiap pembelian. Setiap kali pelanggan menggunakan aplikasi hadiah mereka, Dark Metal Roast Caffeinery memperoleh informasi tentang pembelian, seperti produk tertentu serta waktu dan lokasi.

Perusahaan ingin menggunakan data ini untuk menentukan lokasi terbaik untuk menawarkan promosi tertentu. Untuk mendapatkan wawasan khusus ini, analis mengurutkan data dari program penghargaan dan mengirimkan hasilnya ke tim pemasaran yang mengawasi program loyalitas. Menggunakan presentasi visual, tim pemasaran membuat rekomendasi promosi kepada manajer tingkat atas. Setelah disetujui, Dark Metal Roast Caffeinery dapat menerapkan promosi yang terinformasi di setiap lokasinya.

Related Articles

Back to top button